If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+5x-1476=0
a = 1; b = 5; c = -1476;
Δ = b2-4ac
Δ = 52-4·1·(-1476)
Δ = 5929
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5929}=77$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-77}{2*1}=\frac{-82}{2} =-41 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+77}{2*1}=\frac{72}{2} =36 $
| x^2+5x-588=0 | | 8x=3x-2 | | 10x=12-8x | | -3/4n-1=-9/4 | | (4−22+5)w=25 | | -2+5/3n=7/6 | | 5x+1=9/4 | | -152=4(-2+6x) | | -2(6x-5)=82 | | 364÷h=7 | | 3x-1=4x–1 | | 4/m=2/m-2 | | 2x3-2x+1=0 | | 3x-1=4x–1= | | 3(v-2)+8v=-83 | | S/3-s/5=2 | | -328=-8(1-8b) | | 2x²-11x=-15 | | -x=16-4x | | 0.3x+0.4(18-x)=7 | | 2y=5y-12/5 | | 8y+45+21=116 | | 0.5=(1+(x/4)) | | (x/2+3x/7)=39 | | -0.5=(1+(x/4)) | | 2-w/8=1/4 | | x/2+3x/7=39 | | 8-6a+2+5a+4=0 | | 5(2t+6)=-4(-5-2t)+3t | | 4u/9+2u/9=2 | | y^2+7+21=11 | | -3(4t+3)+4(6t+1)=43 |